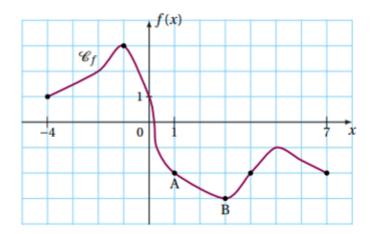
Nom: Prénom:


Classe

Devoir commun n°2-Seconde Vendredi 1^{er} décembre 2023

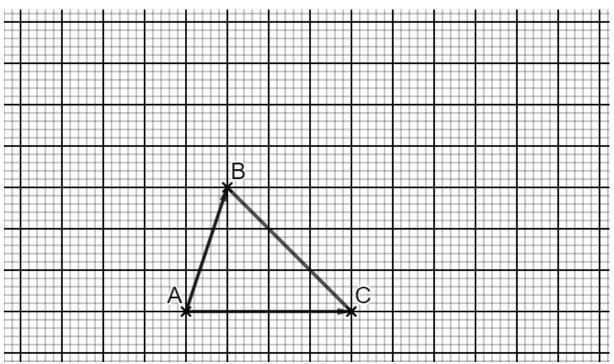
<u>Durée 1h50 – Calculatrice autorisée. Le sujet comporte cinq exercices</u> indépendants. Le barème est sur 30 points.

Exercice 1 (2 points)

Soit f la fonction définie sur l'intervalle $\left\lceil -4 \right\rceil$ par la représentation graphique \mathscr{C}_f ci-dessous :

Déterminer graphiquement (avec la précision permise par le graphique) :

- 1) L'image de 1 par la fonction f;
- 2) La valeur de f(-2);
- 3) Les antécédents de -2 par la fonction f.
- 4) Les coordonnées de A et de B.


Exercice 2 (3 points)

Voici un programme de calcul :

- Choisir un nombre
- Le multiplier par 3
- Soustraire 4 au résultat précédent
- Élever au carré le résultat précédent
- ♦ Multiplier le tout par −2
 - 1) Quel résultat obtient-on à la fin de ce programme de calcul lorsque le nombre choisi au départ est 5 ?
 - 2) Montrer que ce programme définit une fonction f qui à tout nombre x choisi au départ associe le nombre $f(x) = -18x^2 + 48x 32$.

Exercice 3 (7 points)

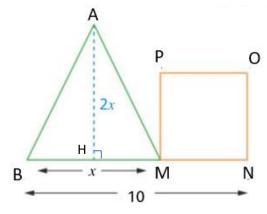
On considère le triangle ABC ci-dessous :

1) Sur cette figure, construire les points M, N et L définis par :

$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$$

$$\overrightarrow{AN} = 2\overrightarrow{AB} - \overrightarrow{AC}$$

$$\overrightarrow{AN} = 2\overrightarrow{AB} - \overrightarrow{AC}$$
 $\overrightarrow{AL} = \overrightarrow{AB} - \overrightarrow{AC}$


- 2) En utilisant la relation de Chasles, démontrer que $\overrightarrow{LN} = \overrightarrow{AB}$.
- 3) Démontrer que $\overrightarrow{CM} = \overrightarrow{AB}$.
- 4) Justifier que le quadrilatère CMNL est un parallélogramme.

Exercice 4 (8 points)

Dans la situation ci-contre :

- Le point M est un point quelconque de [BN]
- BAM est un triangle isocèle en A
- MNOP est un carré

On pose BM = x

Remarque : La figure n'est pas représentée en vraie grandeur et ne respecte pas les proportions

- 1) Déterminer l'intervalle dans lequel varie x, sachant que BM = x
- 2) Exprimer en fonction de $x: A_t$ l'aire de BAM et A_c l'aire de MNOP
- 3) Déterminer toutes les valeurs de *x* telles que **l'aire de MNOP** soit supérieure ou égale à celle de BAM. On notera les solutions possibles sous la forme d'intervalle.
- 4) Démontrer que BA= $\frac{\sqrt{17}}{2} x$. On détaillera les étapes de calculs
- 5) Déterminer toutes les valeurs de x telles que le **périmètre de BAM** soit strictement supérieur à celui de MNOP. On notera les solutions possibles sous la forme d'intervalle.
- 6) Est-il possible que les conditions des questions 3 et 5 soient réalisées simultanément ?
 Si oui, pour quelles valeurs de x?

Exercice 5 (10 points)

Une entreprise produit chaque jour une quantité x d'objets comprise entre 0 et 50. Chaque jour, chaque objet produit est vendu.

Une étude a montré que le coût total de production des x objets est donné, en euro, par: $C(x) = 3x^2 - 100x + 900$

Un objet est vendu au prix de 20 €.

- 1. Exprimer la recette R(x), en euro, en fonction de la quantité x d'objets fabriqués et vendus par jour.
- 2. On rappelle que le bénéfice est égal à la différence entre la recette et le coût de production.
 - a) Montrer que le bénéfice correspondant à la fabrication et à la vente de x objets est : $B(x) = -3x^2 + 120x 900$
 - b) Calculer le bénéfice pour 25 pièces vendues.
 - c) Résoudre B(x) = -900 et interpréter ce résultat dans le contexte de l'exercice.
- 3. a) Montrer que $B(x) = -3(x-20)^2 + 300$
 - b) Montrer que B(x) = -3(x 30)(x 10)
- 4. En utilisant la forme de B(x) la plus adaptée, répondre aux questions suivantes.
- a) Déterminer « les points morts » de la production, c'est-à-dire les quantités à produire et à vendre pour que le bénéfice soit nul.
- b) Déterminer les quantités à produire et à vendre pour réaliser un bénéfice de 300 €.