Exercice 1

$$f(t) = (0.04t^2 - 8t + 400)e^{0.02t} + 40$$
 pour $t \in [0; 120]$

1. $f(0) = (0.04 \times 0^2 - 8 \times 0 + 400)e^{0.02 \times 0} + 40 = 440$ donc il y avait 440 crapauds présents dans le lac lors de l'introduction des truites.

2.
$$f = u \times v + 40$$
 avec $u(t) = 0.04t^2 - 8t + 400$ $v(t) = e^{0.02t}$ $u'(t) = 0.08t - 8$ $v'(t) = 0.02e^{0.02t}$

$$or (uv)' = u'v + uv' \quad donc \qquad f'(t) = (0.08t - 8)e^{0.02t} + (0.04t^2 - 8t + 400) \times 0.02e^{0.02t} \\ = e^{0.02t}(0.08t - 8 + (0.04t^2 - 8t + 400) \times 0.02) \\ = e^{0.02t}(0.08t - 8 + 0.0008t^2 - 0.16t + 8)$$
 Ainsi $f'(t) = (0.0008t^2 - 0.08t)e^{0.02t}$

3. $0.0008t^2 - 0.08t$ est un trinôme dont les racines sont 0 et 100 et pour lequel a = 0.0008 > 0 Ainsi, on a :

t	0		100		120
$0,0008t^2 - 0,08t$	0	_	0	+	
$e^{0,02t}$			+		
f '(t)	0	_	0	+	
f(t)	440	•	40		216,37
	40				

4. Selon cette modélisation :

- **a.** Le nombre de crapauds atteint son minimum au bout de 100 jours. Et le nombre minimum de crapauds est de 40.
- **b.** Après avoir atteint son minimum de 40 le 100ème jour, le nombre de crapauds augmente constamment de 40 crapauds à environ 216, donc il dépassera un jour 140.
- c. D'après la calculatrice, le nombre de crapauds dépassera 140 individus au bout de 116 jours (car $f(115) \approx 130$ et $f(116) \approx 144$)