Term Spé Limites et suites

Exercice 2

En utilisant le théoréme de comparaison ou des gendarmes, déterminer la limite des suites de terme général u,
suivantes :
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c) up = n?2+nx(-1)"
on sait que pour tout entier n -1< (-D)" <1
donc (en multipliant par n, on obtient) —n < n(—-1)" < n
et (en ajoutant n?) n?—n < n?’+ n(-1)" < n’+n
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ainsi n—-n<u, <n’+n

onadonc u, = n*—-n
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Or lim n?—n= lim n? (1 - —) = +o donc par comparaison, on en déduitque  lim u, =+
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d) un=—n + sin(n)

on sait que pour tout entier n -1 < sin(n) <1

donc (enajoutant —n, onobtient) —n—1 < —n+sin(n) < —n+1
ainsi -n—-1<u, < -n+1

onadonc u,< —n+1

Or lim —n+1=-—oc doncparcomparaison, on en déduit que lim u, =—o
n—-+oo n—»+oo

(c’est un cas particulier car ici, (u,) est inférieure a une suite qui a pour limite - o donc (u,) a aussi pour
limite - o)

e) up=n+ 3x(-1)"
on sait que pour tout entier n -1< (-D)" <1
donc (en multipliant par 3, on obtient) —3 < 3 x (-1)" < 3
et (en ajoutant n) n—-3<n+3x(D" < n+3

ainsi n—-3<u, <n+3

onadonc u, = n-—3

Or lim n—3 =400 doncpar comparaison, on en déduit que lim u, =+
n—-+oo n—+oo



