EXERCICE 1: $f(t) = e^3 - e^{-0.5t^2 + t + 2}$

Partie A

2/

 $1/e^{-0.5t^2+t+2}$ est de la forme e^u avec $u(t)=-0.5t^2+t+2$ $d'où u'(t)=-0.5\times 2t+1=-t+1$ Or $(e^u)'=u'e^u$ donc $f'(t)=0-(-t+1)e^{-0.5t^2+t+2}=(t-1)e^{-0.5t^2+t+2}$

t	0 1 5
t-1	- 0 +
$e^{-0.5t^2+t+2}$	+
f '(t)	- 0 +
f(t)	$e^{3} - e^{2} \approx 12,7$ $e^{3} - e^{-5,5} \approx 20,1$ $e^{3} - e^{2,5} \approx 7,9$

3/ Sur [0 ; 1], la fonction f est définie, continue et strictement décroissante. Or 10 est compris entre $f(0) \approx 12.7$ et $f(1) \approx 7.9$ donc d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(t) = 10 admet 1 unique solution α sur [0 ; 1].

De même, on montre que l'équation f(t) = 10 admet 1 unique solution β sur [1; 5].

Ainsi l'équation f(t) = 10 admet 2 solutions α et β sur [0; 5]

D'après la calculatrice, on a $\alpha \approx 0.39$ et $\beta \approx 1.61$

4/ On admet que pour tout réel $t \in [0;5]$, $f''(t) = (2t - t^2)e^{-0.5t^2 + t + 2}$

t	0		2		5
$2t-t^2$	0	+	0	_	
$e^{-0.5t^2+t+2}$			+		
f "(t)	0	+	0	_	

 $2t - t^2$ est un trinôme dont les racines sont 0 et 2 et a = -1 < 0

Ainsi, d'après le signe de f''(t), on en déduit que f est convexe sur [0;2] et concave sur [2;5]

Partie B

Affirmation 1 : La population est modélisée par la fonction f or f est décroissante sur $[\ 0\ ;\ 1]$ donc **l'affirmation 1** est fausse

Affirmation 2: La population de bactéries aura un effectif inférieur à 10000 lorsque $f(t) \le 10$ c'est-à-dire lorsque t est compris entre α et β or $\beta - \alpha \approx 1,61 - 0,39 \approx 1,22 > 1$ donc l'affirmation **2** est vraie **Affirmation 3**: La fonction f est croissante sur [1;5] et devient concave sur [2;5] donc la croissance est ralentie au bout de 2 heures donc **l'affirmation 3** est vraie

Affirmation 4: Le maximum de la fonction f est $f(5) \approx 20.1 < 25$ donc la population ne dépassera jamais 25 000 bactéries donc **l'affirmation 4** est vraie

EXERCICE 2:

1. a 2.c 3.a 4.a

(les justifications suivantes n'étaient pas exigées)

1. Seul l'algorithme a. convient car pour que la fonction seuil fonctionne, il faut que la boucle while s'exécute tant que v < 200 et que le nombre de mois soit augmenté de 1 à chaque exécution de la boucle.

- **2.** Les vecteurs $\overrightarrow{AB}\begin{pmatrix} -2\\2\\-2 \end{pmatrix}$ et $\overrightarrow{AE}\begin{pmatrix} 3\\-3\\3 \end{pmatrix}$ sont colinéaires car $\frac{3}{-2}=-\frac{3}{2}=\frac{3}{-2}=-1,5$ donc les points A, B et E sont alignés
- 3. On cherche α et β tels que $\overrightarrow{AF} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$ avec $\overrightarrow{AB} \begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix}$ $\overrightarrow{AC} \begin{pmatrix} -3 \\ -1 \\ -1 \end{pmatrix}$ et $\overrightarrow{AF} \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$, on a alors $\begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} = \alpha \begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix} + \beta \begin{pmatrix} -3 \\ -1 \\ -1 \end{pmatrix}$

$$\Leftrightarrow \begin{cases} -1 = -2\alpha - 3\beta \\ -1 = 2\alpha - \beta \\ 0 = -2\alpha - \beta \end{cases} \Leftrightarrow \begin{cases} -1 = -2\alpha - 3(-2\alpha) \\ -1 = 2\alpha - (-2\alpha) \\ \beta = -2\alpha \end{cases} \Leftrightarrow \begin{cases} -1 = -2\alpha + 6\alpha \\ -1 = 4\alpha \\ \beta = -2\alpha \end{cases} \Leftrightarrow \begin{cases} -1 = 4\alpha \\ \alpha = -\frac{1}{4} \\ \alpha = -\frac{1}{4} \end{cases} \Leftrightarrow \begin{cases} \alpha = -\frac{1}{4} \\ \alpha = -\frac{1}{4} \end{cases} \text{ on a donc } \alpha = -\frac{1}{4} \text{ et } \beta = \frac{1}{2} \end{cases}$$

Ainsi $\overrightarrow{AF} = -\frac{1}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ ce qui prouve que le point F appartient au plan (ABC)

4.
$$\overrightarrow{AH} = \overrightarrow{AO} + \overrightarrow{OH}$$

$$= \overrightarrow{AO} + 3 \overrightarrow{OA} - \overrightarrow{OB} - \overrightarrow{OC}$$

$$= -\overrightarrow{OA} + 3 \overrightarrow{OA} - (\overrightarrow{OA} + \overrightarrow{AB}) - (\overrightarrow{OA} + \overrightarrow{AC})$$

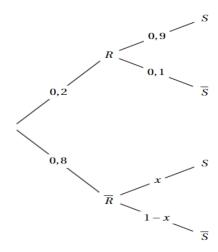
$$= 2 \overrightarrow{OA} - \overrightarrow{OA} - \overrightarrow{AB} - \overrightarrow{OA} - \overrightarrow{AC}$$

$$= -\overrightarrow{AB} - \overrightarrow{AC} \quad \text{ce qui prouve que les vecteurs } \overrightarrow{AH}, \overrightarrow{AB} \text{ et } \overrightarrow{AC} \text{ sont coplanaires}$$

EXERCICE 3:

Partie A

1.



2. R et \bar{R} forment une partition de l'univers et d'après la formule des probabilités totales,

$$P(S) = P(S \cap R) + P\left(S \cap \overline{R}\right) \Leftrightarrow 0,82 = P(R)P_R(S) + P\left(\overline{R}\right)P_{\overline{R}}(S)$$

 $\Leftrightarrow 0,82 = 0,2 \times 0,9 + 0,8x$
 $\Leftrightarrow 0,64 = 0,8x$
 $\Leftrightarrow x = 0,8$

3. La probabilité recherchée est
$$p_S(R) = \frac{p(R \cap S)}{p(S)} = \frac{0.2 \times 0.9}{0.82} = \frac{0.18}{0.82} \approx 0.22$$

Partie B

- 1. **a.** X suit la loi binomiale de paramètres n=5 et p=0,82.
 - b. La probabilité qu'au plus trois clients soient satisfaits de leur achat est

$$P(X \leq 3) \approx 0,222$$

2. **a.** On répète n fois de façon indépendante la même expérience de Bernoulli de paramètre p=0,82. On appelle Y la variable aléatoire qui donne le nombre de clients satisfaits de leur achat parmi ces n clients. Y suit donc la loi binomiale de paramètres n et p=0,82.

Alors,
$$p_n = P(X = n) = \binom{n}{n} \times 0.82^n \times (1 - 0.82)^{n-n} = 1 \times 0.82^n \times 0.18^0 = 0.82^n$$

b. On cherche les entiers n tels que $p_n < 0.01$ avec $p_n = 0.82^n$

or
$$0.82^{23} \approx 0.0104$$
 et $0.82^{24} \approx 0.0085$ donc $0.82^n < 0.01$ à partir de $n = 24$

Ainsi
$$p_n < 0.01$$
 pour $n \ge 24$

Cela signifie que la probabilité que tous les clients soient satisfaits de leur achat est inférieure à 1% dès qu'il y a au moins 24 clients

EXERCICE 4:

Partie A

1.
$$a_1 = a_0 \times \frac{85}{100} + 450 = 200 \times \frac{85}{100} + 450 = 620$$

- 2. Prendre les 85 % du nombre de collaborateurs en télétravail revient à multiplier par 0,85; puis on ajoute 450 donc, pour tout entier naturel n, on a: $a_{n+1} = 0.85 a_n + 450$.
- 3. On considère la suite (v_n) définie pour tout entier naturel n par : $v_n = a_n 3000$; on en déduit que $a_n = v_n + 3000$.

a. •
$$v_{n+1} = u_{n+1} - 3000 = 0,85u_n + 450 - 3000 = 0,85(v_n + 3000) - 2550$$

= $0,85v_n + 2550 - 2550 = 0,85v_n$

•
$$v_0 = u_0 - 3000 = 200 - 3000 = -2800$$

Donc la suite (v_n) est géométrique de raison q = 0.85 et de premier terme $v_0 = -2800$.

- **b.** On en déduit que, pour tout n, on a $v_n = v_0 \times q^n = -2800 \times 0.85^n$.
- **c.** Or $u_n = v_n + 3000$ donc, pour tout entier naturel n, $a_n = -2800 \times 0,85^n + 3000$.
- et $a_{11} \approx 2531$ donc le nombre de télétravailleurs sera strictement **4.** On a $a_{10} \approx 2448$ supérieur à 2500 au bout de 11 mois après la mise en place de cette mesure dans l'entreprise.

Partie B

1. Soit f la fonction définie pour tout $x \in [0; +\infty[$ par $f(x) = \frac{5x+4}{x+2}$.

f est une fonction rationnelle définie sur $[0, +\infty[$ donc elle est dérivable sur $[0; +\infty[$.

$$f'(x) = \frac{5 \times (x+2) - (5x+4) \times 1}{(x+2)^2} = \frac{5x + 10 - 5x - 4) \times 1}{(x+2)^2} = \frac{6}{(x+2)^2}$$

f'(x) > 0 sur $[0, +\infty[$, donc la fonction f est strictement croissante sur $[0; +\infty[$.

- **a.** Soit \mathscr{P} la propriété $0 \leqslant u_n \leqslant u_{n+1} \leqslant 4$.

• Initialisation
$$u_0 = 1$$
 et $u_1 = \frac{5 \times u_0 + 4}{u_0 + 1} = \frac{5 \times 1 + 4}{1 + 2} = \frac{9}{3} = 3$

 $0 \le 1 \le 3 \le 4$, soit $0 \le u_0 \le u_1 \le 4$, donc la propriété est vraie pour n = 0.

Hérédité

On suppose la propriété vraie au rang $n \ge 0$, c'est-à-dire $0 \le u_n \le u_{n+1} \le 0$

La fonction f est strictement croissante sur $[0; +\infty[$ donc sur [0; 4[, donc de la relation $0 \le u_n \le u_{n+1} \le 4$, on déduit $f(0) \le f(u_n) \le f(u_{n+1}) \le 4$

$$f(0) = \frac{4}{2} = 2 \ge 0$$
; $f(u_n) = u_{n+1}$; $f(u_{n+1}) = u_{n+2}$ et $f(4) = \frac{24}{6} = 4$

On a donc: $0 \le u_{n+1} \le u_{n+2} \le 4$, donc la propriété est vraie au rang n+1.

Conclusion

La propriété est vraie au rang 0, et elle est héréditaire pour tout $n \ge 0$, donc, d'après le principe de récurrence, la propriété est vraie pour tout $n \ge 0$.

On a donc démontré que pour tout n, on a : $0 \le u_n \le u_{n+1} \le 4$.

b. • Pour tout n, on a; $u_n \le u_{n+1}$ donc la suite (u_n) est croissante.

• Pour tout n, on a; $u_n \le 4$ donc la suite (u_n) est majorée.

La suite (u_n) est croissante et majorée donc, d'après le théorème de la convergence monotone, la suite (u_n) est convergente.

3. On admet que pour tout entier naturel n, $0 \le 4 - u_n \le 3 \times \left(\frac{1}{2}\right)^n$.

La suite
$$\left(3 \times \left(\frac{1}{2}\right)^n\right)$$
 est géométrique de raison $q = \frac{1}{2}$; or $-1 < \frac{1}{2} < 1$ donc la suite $\left(3 \times \left(\frac{1}{2}\right)^n\right)$ converge vers 0.

D'après le théorème des gendarmes, on déduit $\lim_{n \to +\infty} (4 - u_n) = 0$ et donc $\lim_{n \to +\infty} (u_n) = 4$.

Cela signifie que le nombre de collaborateurs satisfaits va tendre vers $4\,\mathrm{milliers}$ sur les $5\,000\,\mathrm{que}$ compte l'entreprise.