Terminales Spécialité Maths	D S de Mathématiques n° 2	le 04/12/2023		
Durée : 1 h 45	calculatrice autorisée			

Exercice 1: 7,5 points

Le directeur d'une réserve marine a recensé 3 000 cétacés dans cette réserve au 1^{er} juin 2017. Il est inquiet car il sait que le classement de la zone en « réserve marine » ne sera pas reconduit si le nombre de cétacés de cette réserve devient inférieur à 2 000.

Une étude lui permet d'élaborer un modèle selon lequel, chaque année :

- entre le 1^{er} juin et le 31 octobre, 80 cétacés arrivent dans la réserve marine;
- entre le 1^{er} novembre et le 31 mai, la réserve subit une baisse de 5 % de son effectif par rapport à celui du 31 octobre qui précède.

On modélise l'évolution du nombre de cétacés par une suite (u_n) . Selon ce modèle, pour tout entier naturel n, u_n désigne le nombre de cétacés au 1^{er} juin de l'année 2017 + n. On a donc $u_0 = 3000$.

- Justifier que u₁ = 2926.
- **2.** Justifier que, pour tout entier naturel n, $u_{n+1} = 0.95u_n + 76$.
- À l'aide d'un tableur, on a calculé les 8 premiers termes de la suite (u_n). Le directeur a configuré le format des cellules pour que ne soient affichés que des nombres arrondis à l'unité.

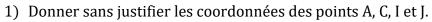
	A	В	С	D	E	F	G	Н	I
1	n	0	1	2	3	4	5	6	7
2	u_n	3 000	2926	2856	2789	2725	2665	2608	2553

Quelle formule peut-on entrer dans la cellule C2 afin d'obtenir, par recopie vers la droite, les termes de la suite (u_n) ?

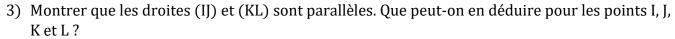
- a. Démontrer que, pour tout entier naturel n, u_n ≥ 1520.
 - b. Démontrer que la suite (u_n) est décroissante.
- On désigne par (v_n) la suite définie par, pour tout entier naturel n, v_n = u_n 1520.
 - a. Démontrer que la suite (v_n) est une suite géométrique de raison 0,95 dont on précisera le premier terme.
 - **b.** En déduire que, pour tout entier naturel n, $u_n = 1480 \times 0.95^n + 1520$.
- Recopier et compléter l'algorithme suivant pour déterminer l'année à partir de laquelle le nombre de cétacés présents dans la réserve marine sera inférieur à 2000.

$$n \leftarrow 0$$
 $u \leftarrow 3000$
Tant que ...
 $n \leftarrow ...$
 $u \leftarrow ...$
Fin de Tant que

La notation « \leftarrow » correspond à une affectation de valeur, ainsi « $n \leftarrow 0$ » signifie « Affecter à n la valeur 0 ».


La réserve marine fermera-t-elle un jour? Si oui, déterminer l'année de la fermeture.

Exercice 2: 7,5 points


Soit ABCD un tétraèdre. I est le milieu de [AB], J celui de [AD].

K et L sont les points tels que $\overrightarrow{BK} = \frac{3}{4} \overrightarrow{BC}$ et $\overrightarrow{DL} = \frac{3}{4} \overrightarrow{DC}$.

On se place dans le repère (A; \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD}).

2) Montrer que les coordonnées du point K sont $(\frac{1}{4}; \frac{3}{4}; 0)$. On admettra que celles du point L sont $(0; \frac{3}{4}; \frac{1}{4})$.

4) On considère le point N de coordonnées (-1; $\frac{3}{2}$; 1) Déterminer les 2 réels α et β tels que $\overrightarrow{IN} = \alpha \overrightarrow{IJ} + \beta \overrightarrow{IK}$. Que peut-on en déduire?

5) On considère le point M de coordonnées $(0; \frac{3}{2}; 0)$.

- a) Sur quelle droite se situe le point M?
- b) Montrer que les points I, K et M sont alignés. On admettra que les points J, L et M sont eux aussi alignés. Que peut-on alors en déduire pour le point M?

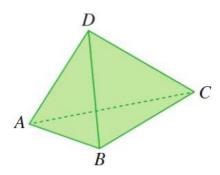
Exercice 3: 5 points

Partie A

A l'occasion d'Halloween, Bilal Oween a acheté un sachet de « bonbons farceurs ». Ces bonbons sont, soit de couleur noire, soit de couleur orange et sont au goût « farceur » ou non. Parmi ces bonbons, 60% sont de couleur noire.

Sur le sachet est indiqué que 40 % des bonbons de couleur noire sont au goût « farceur » alors que seuls 20 % des bonbons de couleur orange sont au goût « farceur ».

On choisit un bonbon au hasard dans le sachet et on considère les événements :


- F: « le bonbon a un goût farceur »
- N: « le bonbon est de couleur noire ».
- 1/ Etablir un arbre pondéré illustrant la situation.
- 2/ Montrer que la probabilité que le bonbon choisi soit au goût « farceur » est égale à 0,32
- 3/ Déterminer la probabilité que le bonbon soit de couleur noire sachant qu'il a un goût « farceur »

Partie B

Bilal Oween décide de prendre sans regarder et au hasard 5 bonbons de son sachet. Le nombre de bonbons dans le sachet est suffisamment grand pour que l'on assimile le choix des bonbons dans le sachet à un tirage avec remise et on rappelle que la probabilité qu'un bonbon soit au goût « farceur » est égale à 0,32.

Soit X la variable aléatoire associée au nombre de bonbons au goût « farceur » pris par Bilal.

- 1/ Justifier que X suit une loi binomiale dont on précisera les paramètres.
- 2/ Calculer la probabilité que Bilal prenne exactement 2 bonbons au goût « farceur ».
- 3/ Bilal pense qu'il a plus de 99% de chances de prendre au moins un bonbon au goût « farceur ». A-t-il raison ?

