Exercice Bac

Dans l'espace rapporté à un repère orthonormé $(0; \vec{i}, \vec{j}, \vec{k})$, on considère :

- le plan 𝒫₁ dont une équation cartésienne est 2x + y − z + 2 = 0,
- le plan \mathcal{P}_2 passant par le point B(1; 1; 2) et dont un vecteur normal est $\overrightarrow{n_2} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.
- **1. a.** Donner les coordonnées d'un vecteur $\overrightarrow{n_1}$ normal au plan \mathcal{P}_1 .
 - b. On rappelle que deux plans sont perpendiculaires si un vecteur normal à l'un des plans est orthogonal à un vecteur normal à l'autre plan. Montrer que les plans P₁ et P₂ sont perpendiculaires.
- 2. a. Déterminer une équation cartésienne du plan P₂.
 - **b.** On note Δ la droite dont une représentation paramétrique est : $\begin{cases} x = 0 \\ y = -2 + t \\ z = t \end{cases}$, $t \in \mathbb{R}$.

Montrer que la droite Δ est l'intersection des plans \mathcal{P}_1 et \mathcal{P}_2 .

On considère le point A(1; 1; 1) et on admet que le point A n'appartient ni à \mathcal{P}_1 ni à \mathcal{P}_2 . On note H le projeté orthogonal du point A sur la droite Δ .

3. On rappelle que, d'après la question **2.b**, la droite Δ est l'ensemble des points M_t de coordonnées (0; -2 + t; t), où t désigne un nombre réel quelconque.

- **a.** Montrer que, pour tout réel t, $AM_t = \sqrt{2t^2 8t + 11}$.
- **b.** En déduire que $AH = \sqrt{3}$.

4. On note \mathcal{D}_1 la droite orthogonale au plan \mathcal{P}_1 passant par le point A et H_1 le projeté orthogonal du point A sur le plan \mathcal{P}_1 .

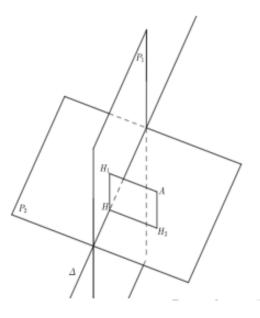
- a. Déterminer une représentation paramétrique de la droite D₁.
- **b.** En déduire que le point H_1 a pour coordonnées $\left(-\frac{1}{3}; \frac{1}{3}; \frac{5}{3}\right)$.

5. Soit H_2 le projeté orthogonal de A sur le plan \mathcal{P}_2 .

On admet que H_2 a pour coordonnées $\left(\frac{4}{3}; \frac{2}{3}; \frac{4}{3}\right)$ et que H a pour coordonnées (0; 0; 2).

Sur le schéma ci-contre, les plans \mathcal{P}_1 et \mathcal{P}_2 sont représentés, ainsi que les points A, H_1 , H_2 , H.

Montrer que AH_1HH_2 est un rectangle.



Exercice Bac

Dans l'espace rapporté à un repère orthonormé $(0; \vec{i}, \vec{j}, \vec{k})$, on considère :

- le plan 𝒫₁ dont une équation cartésienne est 2x + y − z + 2 = 0,
- le plan \mathcal{P}_2 passant par le point B(1; 1; 2) et dont un vecteur normal est $\overrightarrow{n_2} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.
- **1. a.** Donner les coordonnées d'un vecteur $\overrightarrow{n_1}$ normal au plan \mathcal{P}_1 .
 - b. On rappelle que deux plans sont perpendiculaires si un vecteur normal à l'un des plans est orthogonal à un vecteur normal à l'autre plan. Montrer que les plans P₁ et P₂ sont perpendiculaires.
- 2. a. Déterminer une équation cartésienne du plan P₂.
 - **b.** On note Δ la droite dont une représentation paramétrique est : $\begin{cases} x = 0 \\ y = -2 + t \\ z = t \end{cases}$, $t \in \mathbb{R}$.

Montrer que la droite Δ est l'intersection des plans \mathcal{P}_1 et \mathcal{P}_2 .

On considère le point A(1; 1; 1) et on admet que le point A n'appartient ni à \mathcal{P}_1 ni à \mathcal{P}_2 . On note H le projeté orthogonal du point A sur la droite Δ .

3. On rappelle que, d'après la question **2.b**, la droite Δ est l'ensemble des points M_t de coordonnées (0; -2 + t; t), où t désigne un nombre réel quelconque.

- **a.** Montrer que, pour tout réel t, $AM_t = \sqrt{2t^2 8t + 11}$.
- **b.** En déduire que $AH = \sqrt{3}$.

4. On note \mathcal{D}_1 la droite orthogonale au plan \mathcal{P}_1 passant par le point A et H_1 le projeté orthogonal du point A sur le plan \mathcal{P}_1 .

- a. Déterminer une représentation paramétrique de la droite D₁.
- **b.** En déduire que le point H_1 a pour coordonnées $\left(-\frac{1}{3}; \frac{1}{3}; \frac{5}{3}\right)$.

5. Soit H_2 le projeté orthogonal de A sur le plan \mathcal{P}_2 .

On admet que H_2 a pour coordonnées $\left(\frac{4}{3}; \frac{2}{3}; \frac{4}{3}\right)$ et que H a pour coordonnées (0; 0; 2).

Sur le schéma ci-contre, les plans \mathcal{P}_1 et \mathcal{P}_2 sont représentés, ainsi que les points A, H_1 , H_2 , H.

Montrer que AH_1HH_2 est un rectangle.

