Term Spé Maths

Vecteurs dans l'espace

Pour ce type d'exercices où il faut décomposer des vecteurs en utilisant la relation de Chasles, il n'est pas rare de « tâtonner » ou de « tourner en rond », tout en sachant que, bien souvent, il n'y a pas qu'une seule façon d'aboutir au résultat.

Exercice 1

Il s'agit de démontrer que les vecteurs \overrightarrow{AP} et \overrightarrow{HF} sont colinéaires, donc il faut montrer qu'il existe un réel k tel que $\overrightarrow{AP} = k$ \overrightarrow{HF}

On part donc du vecteur \overrightarrow{AP} que l'on va décomposer en utilisant la relation de Chasles : $\overrightarrow{AP} = \overrightarrow{A} \cdot ... + \overrightarrow{I} \cdot ... \overrightarrow{P}$

Mais quel point choisir pour la décomposition? car on peut écrire

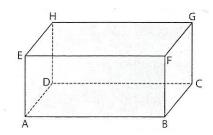
$$\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{BP}$$
 ou $\overrightarrow{AP} = \overrightarrow{AC} + \overrightarrow{CP}$ ou bien encore $\overrightarrow{AP} = \overrightarrow{AH} + \overrightarrow{HP}$... et il y a plein d'autres possibilités...

Pour faire le bon choix, il faut utiliser les éléments de l'énoncé. Ici on sait que $\overrightarrow{BP} = 2\overrightarrow{BA} + \overrightarrow{FG}$ donc on a une relation portant sur le vecteur \overrightarrow{BP} . Il est donc judicieux de décomposer le vecteur \overrightarrow{AP} en utilisant le point **B**.

On a alors
$$\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{BP}$$
 or $\overrightarrow{BP} = 2\overrightarrow{BA} + \overrightarrow{FG}$

D'où
$$\overrightarrow{AP} = \overrightarrow{AB} + 2\overrightarrow{BA} + \overrightarrow{FG}$$

 $= -\overrightarrow{BA} + 2\overrightarrow{BA} + \overrightarrow{FG}$ or $\overrightarrow{BA} = \overrightarrow{GH}$ car ABCDEFGH est un parallélépipède rectangle



D'où
$$\overrightarrow{AP} = \overrightarrow{GH} + \overrightarrow{FG}$$

$$= \overrightarrow{FG} + \overrightarrow{GH}$$

$$= \overrightarrow{FH}$$

$$= -\overrightarrow{HF}$$
donc $\overrightarrow{AP} = -\overrightarrow{HF}$ ce qui prouve que les vecteurs sont colinéaires

Exercice 2

Faire une figure est inutile ici car un tétraèdre ne possède pas de propriétés particulières (égalités de vecteurs par exemple)

Il faut montrer que $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD} + \overrightarrow{CB}$

donc on part du 1^{er} membre de l'égalité $(\overrightarrow{AB} + \overrightarrow{CD})$ que l'on va « transformer » pour obtenir le 2ème membre et puisque le 2ème membre contient le vecteur \overrightarrow{AD} , on peut décomposer le vecteur \overrightarrow{AB} en utilisant la relation de Chasles et le point D (soit $\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB}$)

On a alors
$$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD} + \overrightarrow{DB} + \overrightarrow{CD}$$

 $= \overrightarrow{AD} + \overrightarrow{CD} + \overrightarrow{DB}$ (on permute les vecteurs $\overrightarrow{DB} + \overrightarrow{CD}$)
 $= \overrightarrow{AD} + \overrightarrow{CD} + \overrightarrow{DB}$
 $= \overrightarrow{AD} + \overrightarrow{CD} + \overrightarrow{DB}$
 $= \overrightarrow{AD} + \overrightarrow{CB}$ car $\overrightarrow{CD} + \overrightarrow{DB} = \overrightarrow{CB}$

On a donc bien démontré que $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD} + \overrightarrow{CB}$

Autre possibilité :

On peut aussi partir du 1^{er} membre $(\overrightarrow{AB} + \overrightarrow{CD})$ mais choisir de décomposer le vecteur \overrightarrow{CD} en utilisant le point B ce qui donne :

$$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{CB} + \overrightarrow{BD} = \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{CB} = \overrightarrow{AD} + \overrightarrow{CB}$$

Exercice 3

I étant le milieu de [AB], on va utiliser la relation de Chasles avec le point I pour décomposer les vecteurs \overrightarrow{OA} et \overrightarrow{OB} .

De même, J étant le milieu de [CD], on va utiliser la relation de Chasles avec le point J pour décomposer les vecteurs \overrightarrow{OC} et \overrightarrow{OD} .

On a alors:

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{OI} + \overrightarrow{IA} + \overrightarrow{OI} + \overrightarrow{IB} + \overrightarrow{OJ} + \overrightarrow{JC} + \overrightarrow{OJ} + \overrightarrow{JD}$$

$$= 2 \overrightarrow{OI} + \overrightarrow{IA} + \overrightarrow{IB} + 2 \overrightarrow{OJ} + \overrightarrow{JC} + \overrightarrow{JD}$$

$$= 2 \overrightarrow{OI} + \overrightarrow{O} + 2 \overrightarrow{OJ} + \overrightarrow{O} \quad \text{car I est le milieu de [AB] donc } \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{O}$$

$$\text{et J est le milieu de [CD] donc } \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{O}$$

On a alors
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 2 \overrightarrow{OI} + 2 \overrightarrow{OJ}$$

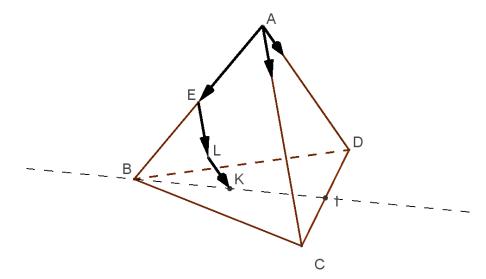
= $2 (\overrightarrow{OI} + \overrightarrow{OJ})$
= $2 \times \overrightarrow{O}$ car \overrightarrow{O} est le milieu de $[IJ]$ donc $\overrightarrow{OI} + \overrightarrow{OJ} = \overrightarrow{O}$

Exercice 4

ABCD est un tétraèdre. I est le milieu de [CD] et K est le point défini par

$$\overrightarrow{AK} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AD}$$

a/



Sur cette figure, on a

$$\overrightarrow{AE} = \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{EL} = \frac{1}{4}\overrightarrow{AC}$$

$$\overrightarrow{LK} = \frac{1}{4}\overrightarrow{AD}$$

b/ Pour \overrightarrow{BI} , on a :

$$\overrightarrow{BI} = \overrightarrow{BC} + \overrightarrow{CI}$$

$$= \overrightarrow{BC} + \frac{1}{2}\overrightarrow{CD} \text{ car I est le milieu de [CD]} \text{ donc } \overrightarrow{CI} = \frac{1}{2}\overrightarrow{CD}$$

$$= \overrightarrow{BC} + \frac{1}{2}(\overrightarrow{CB} + \overrightarrow{BD})$$

$$= \overrightarrow{BC} + \frac{1}{2}\overrightarrow{CB} + \frac{1}{2}\overrightarrow{BD}$$

$$= \overrightarrow{BC} - \frac{1}{2}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{BD}$$

$$= \frac{1}{2}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{BD}$$
On a donc
$$\overrightarrow{BI} = \frac{1}{2}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{BD}$$

Pour \overrightarrow{BK} , on a :

$$\overrightarrow{BK} = \overrightarrow{BA} + \overrightarrow{AK}$$

$$= \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AD} \quad \text{car} \quad \overrightarrow{AK} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AD}$$

$$= \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{4}(\overrightarrow{AB} + \overrightarrow{BC}) + \frac{1}{4}(\overrightarrow{AB} + \overrightarrow{BD})$$

$$= \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{BD}$$

$$= \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BD}$$

$$= \overrightarrow{D} + \frac{1}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BD}$$

$$\text{car} \quad \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AB} = \overrightarrow{BA} + \overrightarrow{AB} = \overrightarrow{D} \quad \text{On a donc} \quad \overrightarrow{BK} = \frac{1}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BD}$$

c/ On a montré que
$$\overrightarrow{BI} = \frac{1}{2}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{BD} = \frac{1}{2}(\overrightarrow{BC} + \overrightarrow{BD})$$

et $\overrightarrow{BK} = \frac{1}{4}\overrightarrow{BC} + \frac{1}{4}\overrightarrow{BD} = \frac{1}{4}(\overrightarrow{BC} + \overrightarrow{BD})$

on en déduit que $\overrightarrow{Bl} = 2 \, \overrightarrow{BK}$ (en effet, $2 \, \overrightarrow{BK} = 2 \, (\frac{1}{4} (\overrightarrow{BC} + \overrightarrow{BD})) = \frac{2}{4} (\overrightarrow{BC} + \overrightarrow{BD}) = \frac{1}{2} (\overrightarrow{BC} + \overrightarrow{BD}) = \overrightarrow{Bl}$)

Ainsi, les vecteurs \overrightarrow{BI} et \overrightarrow{BK} sont colinéaires

Donc les points B, I et K sont alignés

(et comme $\overrightarrow{BI} = 2 \overrightarrow{BK}$, alors on peut aussi en déduire que K est le milieu de [BI])