Term Spé Maths	interrogation n° 2	2
	Suiet A	le 3.10.2025

Nom : Prénom :

Cours:

a/ Donner le nom des étapes de la démonstration par récurrence.

b/Traduire chaque propriété par une inégalité :

La suite (u_n) est minorée par 5

La suite (u_n) est décroissante

Exercice 1

On considère la suite (u_n) définie par $u_0 = 8$ et pour tout entier n, $u_{n+1} = 0.5u_n + 9$

Démontrer par récurrence que, pour tout entier naturel $n \ge 0$, $0 \le u_n \le 18$

Exercice 2

On considère la suite définie par $u_0 = 4$ et pour tout entier n, $u_{n+1} = 2u_n - 3$

a/ Calculer u_1 et u_2

b/ On donne la suite (v_n) définie pour tout entier n par $v_n = u_n - 3$

Démontrer que (v_n) est une suite géométrique dont on précisera la raison et le 1^{er} terme.

En déduire l'expression de v_n en fonction de n, puis celle de u_n en fonction de n

Term Spé Maths	interrogation n° 2	
	Sujet A	<i>le 3.10.2025</i>

Nom:

Prénom:

Cours:

a/ Donner le nom des étapes de la démonstration par récurrence.

b/Traduire chaque propriété par une inégalité :

La suite (u_n) est minorée par 5

La suite (u_n) est décroissante

Exercice 1

On considère la suite (u_n) définie par $u_0 = 8$ et pour tout entier n, $u_{n+1} = 0.5u_n + 9$

Démontrer par récurrence que, pour tout entier naturel $n \ge 0$, $0 \le u_n \le 18$

Exercice 2

On considère la suite définie par $u_0 = 4$ et pour tout entier n, $u_{n+1} = 2u_n - 3$

a/ Calculer u_1 et u_2

b/ On donne la suite (v_n) définie pour tout entier n par $v_n = u_n - 3$

Démontrer que (v_n) est une suite géométrique dont on précisera la raison et le 1^{er} terme.

En déduire l'expression de v_n en fonction de n, puis celle de u_n en fonction de n

Term Spé Maths	interrogation n° 2	
	Sujet B	le 3.10.2025

Nom : Prénom :

Cours:

a/ Donner le nom des étapes de la démonstration par récurrence.

b/Traduire chaque propriété par une inégalité :

La suite (u_n) est minorée par 5

La suite (u_n) est croissante

Exercice 1

Soit (u_n) la suite définie par $u_0 = 50$ et pour tout entier n, $u_{n+1} = 0.6u_n + 8$ Démontrer par récurrence que pour tout entier

naturel $n \ge 0$, $20 \le u_n \le 60$

Exercice 2

On considère la suite définie par $u_0 = 5$ et pour tout entier n, $u_{n+1} = 3u_n - 4$

a/ Calculer u_1 et u_2

b/ On donne la suite (v_n) définie pour tout entier n par $v_n = u_n - 2$

Démontrer que (v_n) est une suite géométrique dont on précisera la raison et le 1^{er} terme.

En déduire l'expression de v_n en fonction de n, puis celle de u_n en fonction de n

Term Spé Maths	interrogation n° 2	
	Sujet B	<i>le 3.10.2025</i>

Nom:

Prénom:

Cours:

a/ Donner le nom des étapes de la démonstration par récurrence.

b/Traduire chaque propriété par une inégalité :

La suite (u_n) est minorée par 5

La suite (u_n) est croissante

Exercice 1

Soit (u_n) la suite définie par $u_0 = 50$ et pour tout entier n, $u_{n+1} = 0.6u_n + 8$

Démontrer par récurrence que pour tout entier naturel $n \ge 0$, $20 \le u_n \le 60$

Exercice 2

On considère la suite définie par $u_0 = 5$ et pour tout entier n, $u_{n+1} = 3u_n - 4$

a/ Calculer u_1 et u_2

b/ On donne la suite (v_n) définie pour tout entier n par $v_n = u_n - 2$

Démontrer que (v_n) est une suite géométrique dont on précisera la raison et le 1^{er} terme.

En déduire l'expression de v_n en fonction de n, puis celle de u_n en fonction de n