Cours:

a/ Donner le nom des étapes de la démonstration par récurrence. Initialisation, Hérédité, conclusion

b/ Traduire chaque propriété par une inégalité :

La suite (u_n) est minorée par 5

Pour tout entier n, $u_n \ge 5$

La suite (u_n) est décroissante

Pour tout entier n, $u_{n+1} \le u_n$

Exercice 1

On considère la suite (u_n) définie par $u_0 = 8$ et pour tout entier n, $u_{n+1} = 0.5u_n + 9$ Démontrer par récurrence que, pour tout entier naturel $n \ge 0$, $0 \le u_n \le 18$

Initialisation : Pour n=0, on a $u_0=8$ donc , $0 \le u_0 \le 18$ donc la propriété est vraie au rang 0

Hérédité : On suppose qu'il existe un rang $k \ge 0$ tel que $0 \le u_k \le 18$ et on cherche alors à démontrer que la propriété est vraie au rang k+1, c'est-à-dire $0 \le u_{k+1} \le 18$

0r
$$0 \le u_k \le 18$$

$$\Leftrightarrow$$
 0,5 × 0 ≤ 0,5 u_k ≤ 0,5 × 18

$$\Leftrightarrow$$
 0,5 × 0 + 9 \leq 0,5 u_k + 9 \leq 0,5 × 18 + 9

$$\Leftrightarrow$$
 9 $\leq u_{k+1} \leq$ 18 \Leftrightarrow 0 $\leq u_{k+1} \leq$ 18 donc l'hérédité est démontrée

Conclusion:

la propriété est vraie pour n=0 et elle est héréditaire donc, pour tout entier n, on a $0 \le u_n \le 18$

Exercice 2

On considère la suite définie par $u_0=4$ et pour tout entier $n,u_{n+1}=2u_n-3$ a/ Calculer u_1 et u_2

$$u_1 = 2 \times u_0 - 3 = 2 \times 4 - 3 = 5$$
 et $u_2 = 2 \times u_1 - 3 = 2 \times 5 - 3 = 7$

b/ On donne la suite (v_n) définie pour tout entier n par $v_n = u_n - 3$ Démontrer que (v_n) est une suite géométrique dont on précisera la raison et le 1^{er} terme.

$$v_n = u_n - 3 \quad \text{donc } u_n = v_n + 3$$

Si
$$v_n = u_n - 3$$
 alors

$$v_{n+1} = u_{n+1} - 3$$

$$= 2u_n - 3 - 3$$

$$= 2u_n - 6$$

$$= 2(v_n + 3) - 6$$
 car $u_n = v_n + 3$

$$=2v_n+6-6$$

 $=2v_n$ donc (v_n) est une suite géométrique de raison q=2 et de 1er terme $v_0=u_0-3=4-3=1$

En déduire l'expression de v_n en fonction de n, puis celle de u_n en fonction de nPuisque (v_n) est une suite géométrique de raison q=2 et de 1^{er} terme $v_0=1$

alors
$$v_n = v_0 \times q^n = 1 \times 2^n = 2^n$$
 or $u_n = v_n + 3$ donc $u_n = 1 \times 2^n + 3 = 2^n + 3$

Cours:

a/ Donner le nom des étapes de la démonstration par récurrence. Initialisation, Hérédité, conclusion

b/ Traduire chaque propriété par une inégalité :

La suite (u_n) est minorée par 5

Pour tout entier n, $u_n \ge 5$

La suite (u_n) est croissante

Pour tout entier n, $u_{n+1} \ge u_n$

Exercice 1

Soit (u_n) la suite définie par $u_0=50$ et pour tout entier n, $u_{n+1}=0.6u_n+8$ Démontrer par récurrence que pour tout entier naturel $n\geq 0$, $20\leqslant u_n\leqslant 60$

Initialisation : Pour n=0, on a $u_0=50~{
m donc}$, $20\leq u_0\leq 60~{
m donc}$ la propriété est vraie au rang 0

Hérédité : On suppose qu'il existe un rang $k \ge 0$ tel que $20 \le u_k \le 60$ et on cherche alors à démontrer que la propriété est vraie au rang k+1, c'est-à-dire $20 \le u_{k+1} \le 60$

Or
$$20 \le u_k \le 60$$

$$\Leftrightarrow$$
 0,6 × 20 ≤ 0,6 u_k ≤ 0,6 × 60

$$\Leftrightarrow$$
 0,6 × 20 + 8 ≤ 0,6 u_k + 8 ≤ 0,6 × 60 + 8

$$\Leftrightarrow$$
 $20 \le u_{k+1} \le 44$ \Leftrightarrow $20 \le u_{k+1} \le 60$ donc l'hérédité est démontrée

Conclusion:

la propriété est vraie pour n=0 et elle est héréditaire donc, pour tout entier n, on a $20 \le u_n \le 60$

Exercice 2

On considère la suite définie par $u_0 = 5$ et pour tout entier $n, u_{n+1} = 3u_n - 4$ a/ Calculer u_1 et u_2

$$u_1 = 3 \times u_0 - 4 = 3 \times 5 - 4 = 11$$
 et $u_2 = 3 \times u_1 - 4 = 3 \times 11 - 4 = 29$

b/ On donne la suite (v_n) définie pour tout entier n par $v_n = u_n - 2$ Démontrer que (v_n) est une suite géométrique dont on précisera la raison et le 1^{er} terme.

$$v_n = u_n - 2$$
 donc $u_n = v_n + 2$

Si
$$v_n = u_n - 2$$
 alors

$$v_{n+1} = u_{n+1} - 2$$

$$=3u_n-4-2$$

$$= 3u_n - 6$$

$$= 3(v_n + 2) - 6$$
 car $u_n = v_n + 2$

$$=3v_n+6-6$$

 $=3v_n$ donc (v_n) est une suite géométrique de raison q=3 et de 1er terme $v_0=u_0-2=5-2=3$

En déduire l'expression de v_n en fonction de n, puis celle de u_n en fonction de n Puisque (v_n) est une suite géométrique de raison q=3 et de 1^{er} terme $v_0=3$

alors
$$v_n = v_0 \times q^n = 3 \times 3^n = 3^{n+1}$$
 or $u_n = v_n + 2$ donc $u_n = 3 \times 3^n + 2 = 3^{n+1} + 2$