N° 45 p 31:

 (u_n) est la suite définie par $u_0=8$ et pour tout entier n, $u_{n+1}=\frac{2}{5}u_n+3$

1/ a.
$$u_1 = \frac{2}{5} \times u_0 + 3 = \frac{2}{5} \times 8 + 3 = \frac{31}{5} = 6.2$$

$$u_2 = \frac{2}{5} \times u_1 + 3 = \frac{2}{5} \times \frac{31}{5} + 3 = \frac{137}{25} = 5,48$$

$$u_3 = \frac{2}{5} \times u_2 + 3 = \frac{2}{5} \times \frac{137}{25} + 3 = \frac{649}{125} = 5{,}192$$

b. il semble que la suite (u_n) soit décroissante.

2/ Démontrons par récurrence que pour tout entier n, $u_n \geq u_{n+1} \geq 5$

Initialisation: On a $u_0=8$ et $u_1=6.2$ donc $u_0\geq u_1\geq 5$ donc la propriété est vraie au rang n=0

 $H\acute{e}r\acute{e}dit\acute{e}$: On suppose qu'il existe un rang $k\geq 0$ tel que $u_k\geq u_{k+1}\geq 5$ et on cherche alors à démontrer que la propriété est vraie au rang k+1, c'est-à-dire, $u_{k+1}\geq u_{k+2}\geq 5$

Or si
$$u_k \ge u_{k+1} \ge 5$$

alors
$$\frac{2}{5}u_k \ge \frac{2}{5}u_{k+1} \ge \frac{2}{5} \times 5$$

$$d'où \frac{2}{5}u_k + 3 \ge \frac{2}{5}u_{k+1} + 3 \ge 2 + 3$$

ainsi $u_{k+1} \ge u_{k+2} \ge 5$

donc l'hérédité est démontrée

Conclusion : la propriété est vraie pour n = 0 et elle est héréditaire

donc pour tout entier n, on a $u_n \ge u_{n+1} \ge 5$

ce qui prouve que la suite est décroissante (et minorée par 5) donc la conjecture est vérifiée.

3/ On donne $v_n = u_n - 5$

$$a/v_n = u_n - 5 \qquad \text{donc } u_n = v_n + 5$$

et
$$v_{n+1} = u_{n+1} - 5$$

$$= \frac{2}{5} u_n + 3 - 5$$

$$= \frac{2}{5} u_n - 2$$

$$= \frac{2}{5} (v_n + 5) - 2$$

$$= \frac{2}{5} v_n + 2 - 2$$

$$= \frac{2}{5} v_n$$

Donc (v_n) est une suite géométrique de raison $q = \frac{2}{5}$

b/Puisque (v_n) est une suite géométrique de raison $q=\frac{2}{5}$ et de 1^{er} terme $v_0=u_0-5=8-5=3$

alors
$$v_n = v_0 \times q^n = 3 \times \left(\frac{2}{5}\right)^n$$

$$4/\ u_n = v_n + 5$$

donc
$$u_n = 3 \times \left(\frac{2}{5}\right)^n + 5$$

$$5/u_{100} = 3 \times \left(\frac{2}{5}\right)^{100} + 5 \approx 5$$

N° 19 p 27

 (u_n) est la suite définie par $u_0=0$ et pour tout entier n, $u_{n+1}=\frac{1}{2-u_n}$

Montrons **par récurrence** que pour tout entier n, $u_n = \frac{n}{n+1}$

Initialisation: Pour n=0, on a $u_0=0$ or $\frac{0}{0+1}=0$ donc la propriété est vraie au rang 0

Hérédité: On suppose qu'il existe un rang $k \ge 0$ tel que $u_k = \frac{k}{k+1}$ et on cherche alors à démontrer que la propriété est vraie au rang k+1, c'est-à-dire $u_{k+1} = \frac{k+1}{k+2}$

or
$$u_{k+1} = \frac{1}{2 - u_k}$$

$$= \frac{1}{2 - \frac{k}{k+1}} \quad \text{car} \quad u_k = \frac{k}{k+1}$$

$$= \frac{1}{\frac{2(k+1) - k}{k+1}}$$

$$= \frac{1}{\frac{2k+2-k}{k+1}}$$

$$= \frac{1}{\frac{k+2}{k+1}}$$

$$= \frac{k+1}{k+2} \quad \text{donc l'hérédité et démontrée}$$

Conclusion: la propriété est vraie pour n = 0 et elle est héréditaire

donc pour tout entier n on a $u_n = \frac{n}{n+1}$