Exercice 1 : $f(x) = (5x - 10)e^{0.2x}$

$$1/a/f = u \times v$$
 avec $u(x) = 5x - 10$ et $v(x) = e^{0.2x}$
 $u'(x) = 5$ $v'(x) = 0.2e^{0.2x}$

Or
$$(uv)' = u'v + uv'$$
 d'où $f'(x) = 5e^{0.2x} + (5x - 10) \times 0.2e^{0.2x}$
 $= e^{0.2x}(5 + (5x - 10) \times 0.2)$
 $= e^{0.2x}(5 + 5x \times 0.2 - 10 \times 0.2)$
 $= e^{0.2x}(5 + x - 2)$
 $= e^{0.2x}(x + 3)$

1. /						
b/	x	$-\infty$		-3		+∞
	$e^{0,2x}$			+		
	<i>x</i> + 3		_	0	+	
	f'(x)		_	0	+	
	f(x)		-2	$25e^{-0.6}$		▼

$$f(-3) = (5 \times (-3) - 10)e^{0.2 \times (-3)} = -25e^{-0.6}$$

Ainsi, f est strictement décroissante sur $]-\infty$; -3] et f est strictement croissante sur $[-3;+\infty[$

Exercice 2:

En 2020, une influenceuse sur les réseaux sociaux compte 1 000 abonnés à son profil. On modélise le nombre d'abonnés ainsi : chaque année, elle perd 10 % de ses abonnés auxquels s'ajoutent 250 nouveaux abonnés.

Pour tout entier naturel n, on note u_n le nombre d'abonnés à son profil en l'année (2020+n), suivant cette modélisation. Ainsi $u_0 = 1\,000$.

- 1. On a donc $u_1 = 1000 \times \left(1 \frac{10}{100}\right) + 250 = 1000 \times 0, 9 + 250 = 900 + 250 = 1150.$
- **2.** Enlever 10 % c'est multiplier par $1 \frac{10}{100} = 1 0, 10 = 0, 90$. Le nombre d'abonnés de l'année précédente est donc multiplié par 0,9; on ajoute en-

$$u_{n+1} = 0,9u_n + 250.$$

- 3. u(10) donne le nombre d'abonnés au bout de 10 ans; une calculatrice donne ≈ 1977 .
- **4. a.** *Initialisation* : on a $u_0 = 1000 \le 2500$: la relation est vraie au rang 0;

suite chaque année 250 nouveaux abonnés, donc pour tout naturel n:

Hérédité : on suppose que pour $n \in \mathbb{N}$, on ait $u_n \leq 2500$.

La multiplication par 0,9 > 0 respectant l'ordre, on a donc $0,9u_n \le 0,9 \times 2500$ ou $0,9u_n \le 2250$, puis en ajoutant 250 à chaque membre :

 $0.9u_n + 250 \le 2250 + 250$, soit $u_{n+1} \le 2500$: la relation est encore vraie au rang n+1.

La relation est vraie au rang 0 et si elle est vraie au rang $n \in \mathbb{N}$, elle est vraie au rang n+1: d'après le principe de récurrence : quel que soit $n \in \mathbb{N}$, $u_n \leq 2500$.

b. Soit $n \in \mathbb{N}$, on a $u_{n+1} - u_n = 0$, $9u_n + 250 - u_n = -0$, $1u_n + 250$. Or d'après la question précédente : $u_n \le 2500$, puis 0, $1u_n \le 0$, 1×2500 ou encore 0, $1u_n \le 250$, soit en prenant les opposés : $-250 \le -0$, $1u_n$ et en ajoutant à chaque membre 250 : $0 \le -0$, $1u_n + 250$.

On a donc pour $n \in \mathbb{N}$, $u_{n+1} - u_n \ge 0$ ou $u_{n+1} \ge u_n$: la suite (u_n) est croissante.

5. **a.** Pour $n \in \mathbb{N}$, $v_{n+1} = u_{n+1} - 2500 = 0, 9u_n + 250 - 2500$, soit $v_{n+1} = 0, 9u_n - 2250 = 0, 9(u_n - 2500) = 0, 9v_n$.

L'égalité vraie quel que soit $n \in \mathbb{N}$, $v_{n+1} = 0.9v_n$ montre que la suite (v_n) est une suite géométrique de raison 0.9 et de terme initial $v_0 = u_0 - 2500 = 1000 - 2500 = -1500$.

- **b.** On sait que quel que soit $n \in \mathbb{N}$, $v_n = v_0 \times 0, 9^n = -1500 \times 0, 9^n$. Or $v_n = u_n 2500 \iff u_n = v_n + 2500 = 2500 1500 \times 0, 9^n$.
- 6. a. $u_{20} = -1500 \times 0.9^{20} + 2500 \approx 2317 \,$ donc dans 20 ans, soit en 2040, cette influenceuse aura 2317 abonnés à son profil.
 - b. On peut raisonner par tâtonnement à l'aide de la formule de u_n , on a $u_{15} \approx 2191$ et $u_{16} \approx 2222$

ou programmer l'algorithme suivant qui renverra la valeur 16.

```
n = 0

u = 1000

while u < 2200:

u = 0.9*u + 250

n = n+1

return n
```