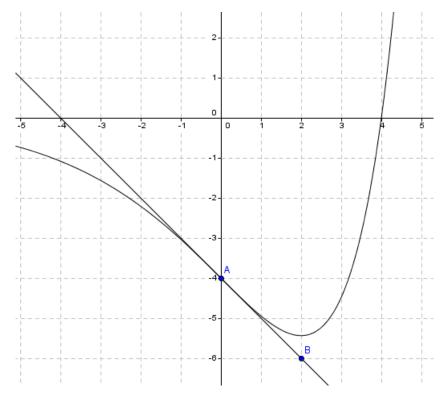
Exercice 1:

Partie A:

Dans le plan muni d'un repère orthogonal, la courbe C représente une fonction f définie sur \mathbb{R} .

La tangente T à la courbe C au point A(0; -4) passe par le point B(2; -6).



On désigne par f' la fonction dérivée de f.

- 1. a) Donner la valeur de f(0).
 - b) Donner la valeur de f'(0).
 - c) En déduire l'équation réduite de la tangente T.

2. Conjecturer pour quelle valeur de x, C admet une tangente parallèle à l'axe des abscisses.

Partie B:

On considère maintenant la fonction f définie pour tout réel x par $f(x) = (x-4)e^{0.5x}$.

- 1) a) Déterminer l'expression de f'(x).
 - b) Déterminer le sens de variation de la fonction f sur \mathbb{R} .
- 3) a) Déterminer une équation de la tangente T' au point d'abscisse 4.

Exercice 2:

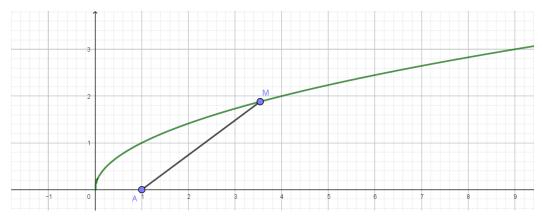
Soit (u_n) la suite définie par $u_0 = 8$ et pour tout entier naturel n, $u_{n+1} = 0.85 u_n + 1.8$.

- 1) Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = u_n 12$.
 - a) Démontrer que la suite (v_n) est une suite géométrique de raison 0,85. Préciser son premier terme.
 - b) Exprimer pour tout entier naturel n, v_n en fonction de n.
 - c) En déduire que pour tout entier naturel n, $u_n = 12 4 \times 0.85^n$.
 - d) Etudier le sens de variation de la suite (u_n) .
 - e) Montrer que la suite (u_n) est majorée par 12.
- 2) Un magazine est vendu uniquement par abonnement. On a constaté que :
 - Il y a 1 800 nouveaux abonnés chaque année;

- d'une année sur l'autre, 15 % des abonnés ne se réabonnent pas ;
- en 2018, il y avait 8 000 abonnés.
- a) Montrer que cette situation peut être modélisée par la suite (u_n) où u_n désigne le nombre de milliers d'abonnés en (2018 + n).
- b) Calculer une estimation du nombre d'abonnés en 2024.
- c) La suite (u_n) est majorée par 12. Interpréter concrètement ce résultat.

Exercice 3:

On considère la fonction f définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}]$ et M un point quelconque de sa courbe représentative tracée dans un repère orthonormé. On place le point A (1;0)



- 1. Démontrer que si l'on note x l'abscisse du point M, on a AM = $\sqrt{x^2 x + 1}$
- 2. Soit la fonction g définie sur $[0; +\infty[$ par $g(x) = \sqrt{x^2 x + 1}$ a/ Etudier les variations de g sur $[0; +\infty[$ b/ En déduire la position du point M pour laquelle la distance AM est minimale. Quelle est alors cette distance minimale ?